Ozone depletion and UVB radiation: impact on plant DNA damage in southern South America.

نویسندگان

  • M C Rousseaux
  • C L Ballaré
  • C V Giordano
  • A L Scopel
  • A M Zima
  • M Szwarcberg-Bracchitta
  • P S Searles
  • M M Caldwell
  • S B Díaz
چکیده

The primary motivation behind the considerable effort in studying stratospheric ozone depletion is the potential for biological consequences of increased solar UVB (280-315 nm) radiation. Yet, direct links between ozone depletion and biological impacts have been established only for organisms of Antarctic waters under the influence of the ozone "hole;" no direct evidence exists that ozone-related variations in UVB affect ecosystems of temperate latitudes. Indeed, calculations based on laboratory studies with plants suggest that the biological impact of ozone depletion (measured by the formation of cyclobutane pyrimidine dimers in DNA) is likely to be less marked than previously thought, because UVA quanta (315-400 nm) may also cause significant damage, and UVA is unaffected by ozone depletion. Herein, we show that the temperate ecosystems of southern South America have been subjected to increasingly high levels of ozone depletion during the last decade. We found that in the spring of 1997, despite frequent cloud cover, the passages of the ozone hole over Tierra del Fuego (55 degrees S) caused concomitant increases in solar UV and that the enhanced ground-level UV led to significant increases in DNA damage in the native plant Gunnera magellanica. The fluctuations in solar UV explained a large proportion of the variation in DNA damage (up to 68%), particularly when the solar UV was weighted for biological effectiveness according to action spectra that assume a sharp decline in quantum efficiency with increasing wavelength from the UVB into the UVA regions of the spectrum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bnl-68538 Medical and Environmental Effects of Uv Radiation

Organisms living on the earth are exposed to solar radiation, including its ultraviolet (UV) components (for general reviews, the reader is referred to Smith [1] and Young et al. [2]). UV wavelength regions present in sunlight are frequently designated as UVB (290-320 nm) and UVA (320-400 rim). In today’s solar spectrum, UVA is the principal UV component, with UVB present at much lower levels. ...

متن کامل

Considerations for evaluating ultraviolet radiation-induced genetic damage relative to Antarctic ozone depletion.

Springtime ozone depletion over the Antarctic results in increased UVB in local marine environments. It has been established that decreases in primary productivity occur with decreases in ozone concentrations, but the impact of increased UVB on the functioning and stability of the ecosystem has not yet been determined. Very little has been done to evaluate the potential for genetic damage cause...

متن کامل

Limited effects of Antarctic ozone depletion on sea urchin development

The sea urchin, Sterechinus neumayeri, has a circumpolar distribution and is an abundant species in benthic communities of the Antarctic. Reproduction occurs during austral spring, when ozone concentrations over the past 25 years have been reduced by 50% or more, potentially exposing the planktonic embryos and larvae to elevated levels of UVB. During spring of 1996, cultures of S. neumayeri emb...

متن کامل

The effects of UVB radiation on charophycean algae and bryophytes

This thesis reports on the effects of UVB radiation on charophycean algae and bryophytes. Due to thinning of the ozone layer, more UVB radiation is reaching the earth surface. UVB radiation affects life on earth. Since the discovery of the ozone hole many studies focused on the effects of UV(B) radiation on terrestrial and marine organisms. Studies that focused on the effects on plants showed d...

متن کامل

Not just about sunburn--the ozone hole's profound effect on climate has significant implications for Southern Hemisphere ecosystems.

Climate scientists have concluded that stratospheric ozone depletion has been a major driver of Southern Hemisphere climate processes since about 1980. The implications of these observed and modelled changes in climate are likely to be far more pervasive for both terrestrial and marine ecosystems than the increase in ultraviolet-B radiation due to ozone depletion; however, they have been largel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 26  شماره 

صفحات  -

تاریخ انتشار 1999